Принц
Администратор
- Регистрация
- 16 Дек 2016
- Сообщения
- 161.552
- Реакции
- 465.775
Складчина: [БХВ] Машинное обучение для приложений высокого риска: подходы к ответственному искусственному интеллекту [Джеймс Кертис, Парул Панди, Патрик Холл]
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Витамин D. Отличаем физиологию от маркетинга [nativalife] [Виктория Самира]
- Курс по дизайну презентаций Point to Point [Тариф Базовый] [Лидия Лоткина]
- [Ватные игрушки] Лошадь в яблоке [Vat_rushki] [Ольга Кудрина, Анна Бабинова]
- Подписка на аналитические материалы Smartlab Premium (август-сентябрь 2025) [Тимофей Мартынов]
- [ИИ] Искусственный интеллект hailuoai: помощник в создании видео [Тариф Max] [№8, на 1 месяц до 24 человек, по записи] [hailuoai.video]
- Моя торговая стратегия 2025 [Бага Исаков] [Повтор]