Kliner
Platinum
- Регистрация
- 21 Янв 2015
- Сообщения
- 11.436
- Реакции
- 36.870
[POSTS]Рассматриваются некоторые теоретические проблемы, возникающие при разработке математического обеспечения вычислительных систем. Изучаются такие фундаментальные проблемы, как теория потоков в сетях, анализ сложности алгоритмов и сложности дискретных задач. Рассмотрены методы решения переборных задач. Даны алгоритмы решения некоторых задач на параллельной машине с произвольным доступом.
Приведены и исследованы два алгоритма решения задачи о максимальном потоке (алгоритмы Форда-Фалкерсона и Карзанова). В качестве приложения потоковых алгоритмов дан алгоритм планирования вычислений в многопроцессорных вычислительных системах. Исследован алгоритм сортировки с помощью кучи. Рассматривая в качестве модели процесса вычислений детерминированную машину Тьюринга, введены и исследованы понятия рекурсивных и рекурсивно перечислимых языков, сложностных классов языков и задач (P, NP, co-NP, NPC, NPH и др.), изучена их взаимосвязь. Рассмотрены методы доказательства NP-полноты. Даны некоторые методы решения переборных задач (метод “ветвей и границ”, рандомизированные алгоритмы, приближенные алгоритмы и др.) и показана возможность применения теории NP-полноты к разработке алгоритмов решения этих задач. Приведены и исследованы параллельные алгоритмы решения некоторых задач, связанных с работой со списками и деревьями. Для каждого из приведенных алгоритмов дается обоснование и определяется вычислительная сложность.
Скачать:
Приведены и исследованы два алгоритма решения задачи о максимальном потоке (алгоритмы Форда-Фалкерсона и Карзанова). В качестве приложения потоковых алгоритмов дан алгоритм планирования вычислений в многопроцессорных вычислительных системах. Исследован алгоритм сортировки с помощью кучи. Рассматривая в качестве модели процесса вычислений детерминированную машину Тьюринга, введены и исследованы понятия рекурсивных и рекурсивно перечислимых языков, сложностных классов языков и задач (P, NP, co-NP, NPC, NPH и др.), изучена их взаимосвязь. Рассмотрены методы доказательства NP-полноты. Даны некоторые методы решения переборных задач (метод “ветвей и границ”, рандомизированные алгоритмы, приближенные алгоритмы и др.) и показана возможность применения теории NP-полноты к разработке алгоритмов решения этих задач. Приведены и исследованы параллельные алгоритмы решения некоторых задач, связанных с работой со списками и деревьями. Для каждого из приведенных алгоритмов дается обоснование и определяется вычислительная сложность.
Скачать:
Для просмотра скрытого содержимого вы должны зарегистрироваться
[/POSTS]Возможно, Вас ещё заинтересует:
- [Майя Богданова] Школа контента (Текст)(2019)
- [Владислав Бермуда] 88 креативных идей на миллион (2023)
- [Олег Брагинский] Средняя энциклопедия траблшутера
- [Вадим Тихомиров] Пчеловодство. Большая иллюстрированная энциклопедия
- [Юлия Леликова] Как открыть пекарню-кондитерскую. В ресторане и без него
- [Хакамада Ирина] Success [успех] в Большом городе