Принц
Администратор
- Регистрация
- 16 Дек 2016
- Сообщения
- 161.780
- Реакции
- 465.775
Складчина: Временные ряды для прогноза криптовалют [stepik] [Елена Кантонистова]
Курс посвящен изучению методов анализа и прогнозирования временных рядов на примере криптовалют с помощью классических подходов и при помощи машинного обучения
Чему вы научитесь
познакомитесь с задачей прогнозирования временных рядов и основными подходами к ее решению
узнаете о Python библиотеках, предназначенных для анализа временных рядов
поучаствуете в соревновании и построите прогнозные модели для предсказания цен на криптовалюты
О курсе
В данном курсе изучаются методы анализа временных рядов и решается задача прогнозирования цены криптовалют с помощью классических подходов, а также при помощи машинного обучения
Для кого этот курс
Курс предназначен для слушателей, знакомых с основами анализа данных и машинного обучения и желающих научиться специальным подходам, предназначенным для прогнозирования временных рядов. Также курс будет интересен тем, кто интересуется поведением криптовалют
Начальные требования
знание математики в рамках школьной программы
знание алгоритмов анализа данных и машинного обучения на начальном или среднем уровне
умение программировать на python на начальном уровне или выше
Елена Кантонистова. Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Академический руководитель магистратуры "Искусственный интеллект" (ранее "Машинное обучение и высоконагруженные системы") Факультета компьютерных наук ВШЭ, доцент департамента больших данных и информационного поиска ФКН…
Интенсив состоит из трех онлайн-занятий:
Методы анализа временных рядов, линейные модели
Вебинар от эксперта по криптовалютам
Машинное обучение для построения прогнозов
Программа курса
Как устроен курс
Особенности работы с временными рядами
Материалы первого вебинара
Домашнее задание
Рассказ эксперта о криптовалютах
Машинное обучение для прогнозирования временных рядов
Фреймворки для работы с временными рядами в Python
Материалы третьего вебинара
Домашнее задание
Адаптивный подход
Улучшения классических экспоненциальных моделей
Домашнее задание
Платформа Kaggle
Подведение итогов
В курс входят 15 уроков 7часов 25минут видео 25 тестов
Цена 200 ₽
СКАЧАТЬ
Курс посвящен изучению методов анализа и прогнозирования временных рядов на примере криптовалют с помощью классических подходов и при помощи машинного обучения
Чему вы научитесь
познакомитесь с задачей прогнозирования временных рядов и основными подходами к ее решению
узнаете о Python библиотеках, предназначенных для анализа временных рядов
поучаствуете в соревновании и построите прогнозные модели для предсказания цен на криптовалюты
О курсе
В данном курсе изучаются методы анализа временных рядов и решается задача прогнозирования цены криптовалют с помощью классических подходов, а также при помощи машинного обучения
Для кого этот курс
Курс предназначен для слушателей, знакомых с основами анализа данных и машинного обучения и желающих научиться специальным подходам, предназначенным для прогнозирования временных рядов. Также курс будет интересен тем, кто интересуется поведением криптовалют
Начальные требования
знание математики в рамках школьной программы
знание алгоритмов анализа данных и машинного обучения на начальном или среднем уровне
умение программировать на python на начальном уровне или выше
Елена Кантонистова. Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Академический руководитель магистратуры "Искусственный интеллект" (ранее "Машинное обучение и высоконагруженные системы") Факультета компьютерных наук ВШЭ, доцент департамента больших данных и информационного поиска ФКН…
Интенсив состоит из трех онлайн-занятий:
Методы анализа временных рядов, линейные модели
Вебинар от эксперта по криптовалютам
Машинное обучение для построения прогнозов
Программа курса
Как устроен курс
Особенности работы с временными рядами
Материалы первого вебинара
Домашнее задание
Рассказ эксперта о криптовалютах
Машинное обучение для прогнозирования временных рядов
Фреймворки для работы с временными рядами в Python
Материалы третьего вебинара
Домашнее задание
Адаптивный подход
Улучшения классических экспоненциальных моделей
Домашнее задание
Платформа Kaggle
Подведение итогов
В курс входят 15 уроков 7часов 25минут видео 25 тестов
Цена 200 ₽
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Анализ текущей ситуации на финансовых рынках и выбор успешной торговой системы (16.08.2025) [Аврора] [Игорь Тощаков]
- Миллион на Airdrop №2 [Клуб трёх запятых]
- [WP] Popcorn Theme - Супербыстрая тема для блогеров и партнерских сайтов [Alex Cooper]
- Влажность воздуха [Изи Физис] [Надежда Юрьевна, Анна Вячеславовна]
- Преобразования энергии [Изи Физис] [Надежда Юрьевна, Анна Вячеславовна]
- Искусство вкуса [Александр Одноворченко]